spc {GSIF} | R Documentation |
Derives Spatial Predictive Components for a given set of covariates. It wraps the stats::prcomp
method and predicts a list principal components for an object of type "SpatialPixelsDataFrame"
.
## S4 method for signature 'SpatialPixelsDataFrame,formula' spc(obj, formulaString, scale. = TRUE, silent = FALSE, ...) ## S4 method for signature 'list,list' spc(obj, formulaString, scale. = TRUE, silent = FALSE, ...)
obj |
object of class |
formulaString |
object of class |
scale. |
object of class |
silent |
object of class |
... |
additional arguments that can be passed to |
spc
returns an object of type "SpatialComponents"
. This is a list of grids with generic names PC1
,...,PCp
, where p
is the total number of input grids.
This method assumes that the input covariates are cross-correlated and hence their overlap can be reduced. The input variables are scaled by default and the missing values will be replaced with 0 values to reduce loss of data due to missing pixels. This operation can be time consuming for large grids.
Tomislav Hengl
stats::prcomp
, SpatialComponents-class
# load data: library(plotKML) library(sp) pal = rev(rainbow(65)[1:48]) data(eberg_grid) gridded(eberg_grid) <- ~x+y proj4string(eberg_grid) <- CRS("+init=epsg:31467") formulaString <- ~ PRMGEO6+DEMSRT6+TWISRT6+TIRAST6 eberg_spc <- spc(eberg_grid, formulaString) names(eberg_spc@predicted) # 11 components on the end; ## Not run: # plot maps: rd = range(eberg_spc@predicted@data[,1], na.rm=TRUE) sq = seq(rd[1], rd[2], length.out=48) spplot(eberg_spc@predicted[1:4], at=sq, col.regions=pal) ## End(Not run)