gstatModel-class {GSIF} | R Documentation |
A class containing fitted parameters of a geostatistical model to be used to run predictions by regression-kriging. It comprises regression model (e.g. a GLM), variogram model, and observation locations of sampled values used to fit the model.
Any model passed to the regModel
slot must come with generic functions such as residuals
, fitted.values
, summary
, formula
and predict
.
regModel
:object of class "ANY"
; output of fitting a generalized linear model (GLM) or any similar regression model
svgmModel
:object of class "data.frame"
; sample variogram with semivariances and distances
vgmModel
:object of class "data.frame"
; the fitted gstat variogram model parameters containing variogram model, nugget, sill, range and the five anisotropy parameters
sp
:object of class "SpatialPointsDataFrame"
; observation locations
signature(obj = "gstatModel")
: makes predictions for a set of given predictionLocations (gridded maps) at block support corresponding to the cellsize
slot in the object of class "SpatialPixelsDataFrame"
; to produce predictions at point support, submit the predictionLocations
as "SpatialPointsDataFrame"
signature(obj = "gstatModel")
: runs n-fold cross-validation of the existing gstatModel (it re-fits the model using existing formula string and model data, then estimates the mapping error at validation locations)
signature(obj = "gstatModel", ...)
: plots goodness of fit and variogram model
"SpatialPredictions"
saves results of predictions for a single target variable, which can be of type numeric or factor. Multiple variables can be combined into a list. When using nsim
argument with the predict
method, the output result will be of type:
plotKML::RasterBrickSimulations-class
i.e. N number of equiprobable realizations. To generate an object of type:
plotKML::SpatialPredictions-class
set nsim = 0
.
Tomislav Hengl and Gerard B.M. Heuvelink
predict.gstatModel
, test.gstatModel
, plotKML::SpatialPredictions-class
, plotKML::RasterBrickSimulations-class
, gstat::gstat
, stats::glm
## load observations: library(plotKML) library(sp) library(maptools) demo(meuse, echo=FALSE) data(meuse) coordinates(meuse) <- ~x+y proj4string(meuse) <- CRS("+init=epsg:28992") ## load grids: data(meuse.grid) coordinates(meuse.grid) <- ~x+y gridded(meuse.grid) <- TRUE proj4string(meuse.grid) <- CRS("+init=epsg:28992") ## fit a model: omm <- fit.gstatModel(meuse, om~dist+ffreq, fit.family=gaussian(link="log"), meuse.grid) plot(omm) ## produce SpatialPredictions: om.rk <- predict(omm, predictionLocations = meuse.grid) plot(om.rk) ## run a proper cross-validation: rk.cv <- validate(omm) ## RMSE: sqrt(mean((rk.cv$validation$var1.pred-rk.cv$validation$observed)^2))