| fit.vgmModel-methods {GSIF} | R Documentation |
Fits a 2D or 3D variogram model based on a regression matrix and spatial domain of interest.
## S4 method for signature 'formula,data.frame,SpatialPixelsDataFrame'
fit.vgmModel(formulaString,
rmatrix, predictionDomain, vgmFun = "Exp",
dimensions = list("2D", "3D", "2D+T", "3D+T"),
anis = NULL, subsample = nrow(rmatrix), ivgm, cutoff = NULL,
width, cressie = FALSE, ...)
formulaString |
object of class |
rmatrix |
object of class |
predictionDomain |
object of class |
vgmFun |
character; variogram function ( |
dimensions |
character; |
anis |
vector containing 2, 5 or more anisotropy parameters; see |
subsample |
integer; size of the subset |
ivgm |
vgm; initial variogram model |
cutoff |
numeric; distance up to which point pairs are included in semivariance estimates |
width |
numeric; sample variogram bin width |
cressie |
logical; specifies whether to use cressie robust estimator |
... |
other optional arguments that can be passed to |
It will try to fit a variogram to multidimensional data. If the data set is large, this process can be time-consuming, hence one way to speed up fitting is to subset the regression matrix using the subsample argument (i.e. randomly subset observations).
Tomislav Hengl
fit.regModel, fit.gstatModel, gstat::fit.variogram
library(sp) library(gstat) ## fit variogram to the Meuse data: demo(meuse, echo=FALSE) # produce a regression matrix: ov <- over(meuse, meuse.grid) ov <- cbind(data.frame(meuse["om"]), ov) # fit a model: v <- fit.vgmModel(om~1, rmatrix=ov, meuse.grid, dimensions="2D") plot(variogram(om ~ 1, meuse[!is.na(meuse$om),]), v$vgm)